Activity Recognition Using Biomechanical Model Based Pose Estimation
نویسندگان
چکیده
In this paper, a novel activity recognition method based on signal-oriented and model-based features is presented. The model-based features are calculated from shoulder and elbow joint angles and torso orientation, provided by upper-body pose estimation based on a biomechanical body model. The recognition performance of signal-oriented and model-based features is compared within this paper, and the potential of improving recognition accuracy by combining the two approaches is proved: the accuracy increased by 4–6% for certain activities when adding model-based features to the signal-oriented classifier. The presented activity recognition techniques are used for recognizing 9 everyday and fitness activities, and thus can be applied for e.g., fitness applications or ‘in vivo’ monitoring of patients.
منابع مشابه
استفاده از برآورد حالتهای پویای دست مبتنی بر مدل، برای تقلید عملکرد بازوی انسان توسط ربات با دادههای کینکت
Pose estimation is a process to identify how a human body and/or individual limbs are configured in a given scene. Hand pose estimation is an important research topic which has a variety of applications in human-computer interaction (HCI) scenarios, such as gesture recognition, animation synthesis and robot control. However, capturing the hand motion is quite a challenging task due to its high ...
متن کاملHuman 3D Pose Estimation and Activity Recognition from Multi-View Videos: Comparative Explorations of Recent Developments
This paper presents a review and comparative study of recent multi-view approaches for human 3D pose estimation and activity recognition. We discuss the application domain of human pose estimation and activity recognition and the associated requirements, covering: advanced Human-Computer Interaction (HCI), assisted living, gesture-based interactive games, intelligent driver assistance systems, ...
متن کاملObject recognition and pose estimation using color cooccurrence histograms and geometric modeling
Robust techniques for object recognition and pose estimation are essential for robotic manipulation and object grasping. In this paper, a novel approach for object recognition and pose estimation based on color cooccurrence histograms and geometric modelling is presented. The particular problems addressed are: (i) robust recognition of objects in natural scenes, (ii) estimation of partial pose ...
متن کاملModel-Based and Image-Based Methods for Facial Image Synthesis, Analysis and Recognition
We review several model-based and image-based methods that we have developed for analyzing, synthesizing, and recognizing facial images. Our model-based methods include a sophisticated, functional model of the human face/head, which incorporates a biomechanical tissue model with embedded muscle actuators, and techniques for applying it to computer animation and expression estimation in video. O...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کامل